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Abstract

Meso- or micro-scale soft robots with specific metiration profiles have been demonstrated
advanced locomotion capabilities in a plethora métructured environments. Despite some earlier
success, technical challenges still exist for féxi fabricating sophisticated constructed,
heterogeneous and configurable soft magnetic radtatsrelatively low cost. Here, by developing a
new selective surface adhesion tuning, we repoaaasfer printing-based approach to flexibly
configure magnetic domains for making 2/3-dimenald@/3D) shaped fast-transforming untethered
soft magnetic robots as well as heterogeneousratieg of other desirable functional cells. This
method enables physical realization of modular igoméble magnetic robots integrated with specific
magnetized profiles and other functional units li&GO’s strategy. Further, we demonstrate a series
of magnetic robots capable of configurable motind Besponsive behaviors. This technique can serve
as a new platform technique, potentially broadening physical realization of heterogeneous

integrable soft magnetic robots and empowering thviiim new capabilities and possibilities.

Keywords
Surface adhesion tuning, Selective transfer pigntBoft magnetic robots, Heterogeneous integration,

Multifunctionalities
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1. Introduction
More intimate interactions between robots and hiwgfeanvironments are anticipated with the rapid
advancement of robotic technologj&g and further social interactions have beeretishs one of the
grand challenges &ience Robotics, recently[2]. Being able to attenuate external impacts atapa
their morphologies in complex environments natyradioft robots demonstrate great advantages
over rigid ones [3-8]. To maximally exploit the gtepotential of soft robots, an untethered
realization or embodiment is desirable, althougls itechnically challenging [9]. Recently, new
designs were reported by employing, e.g., hydrqu@oxide decomposition [10], internal explosion
[11,12], dielectric elastomer actuation [13], magnenavigation [14], onsite flow battery
energization [15] and actuation via induced engngyglients [16]. Among these, soft magnetic robots,
inheriting the advantages from traditional rigid gnatic actuation [17], stand out due to their
excellent performance in a confined space withtikadly facile control strategies and rapid respanse
Thanks to the well-established magnetic contraitsgies and infrastructures [18], these devices
significantly lower the learning curve and allowvdmpers to focus their efforts on new feature
developments that can be applied readily in practic

Recently, a number of studies on soft magnetictsohave been reported [19-32]. These robots
achieved advanced locomotion and various functibeslin enclosed, unstructured environments
and some challenging applications, e.g., in targdteg delivery [19-21] and in minimally-invasive
surgery [22]. Targeted for biomedical applicationsagnetic particles were introduced into soft
matrix such as soft elastomers [23], hydrogels Z@8}-and composites [27], and have been
demonstrated in the applications for various madaians at micro scale. Recently, a soft magnetic

robot with a multi-legged design was shown to ekhdpid locomotion in a harsh environment [29].
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Remarkably, such accurately presetting of the addide internal magnetic domains in soft bodies
paves a new way to precisely control the dynamidionoof soft robots and offers them new
opportunities to achieve complex gaits [30-32]. kuwstance, utilizing high compliance of soft
materials, Sitti's group showed a continuously-neged soft robot that can achieve a multimodal
locomotion [30]; nearly in the same period, Zlehal reported an elegant 3D printing technique and
build discrete magnetized ferromagnetic domains afstmating complex shape changes [31].
However, to further exploit their potential and gguew capabilities towards higher level
intelligence [30,33], it is very necessary to cogesmagnetic actuation strategy with other
functionalities, and further to heterogeneouslggnate various functional parts into a configurable
magnetic robot system [34-37], e.g., constructimgagnetic robot system with a specific magnetized
and shaped profile and both integrated with otresirdble heterogeneous functional components.
Especially when those functional components capliained conveniently from diverse advanced
manufacturing techniques, including but not limitedBD printing, soft lithography, laser processing
molding and even transfer printing. However, phgsiocnplementation of such sophisticated soft
magnetic robot has been hindered by lack of adaat universal manufacturing route that can fully
take advantages of various manufacturing technjgilesbly configure soft magnetic robots and
integrate totally different functional units for simble specifications as that LEGQoys do.
Therefore, one desirable solution is to preset reagadomains as “LEGO strategy”: a), design a few
specific basic magnetized vector cells or functiaadls in specific shapes serving as basic catist
then b), configure a modularized robot system inowes temporal sequences and spatial forms with

diverse configurations to achieve various capabdiiftunctions in a cost- yet time-efficient way.
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Transfer printing is a set of techniques for 2D 8bddiscrete rearrangement of various material
or functional parts spatially from a donor to aeiger [38]. As a versatile platform technology, it
offers a useful yet flexible tool for fabricating tfagh-performance, heterogeneously integrated
functional system at a relatively low cost. Duritige transfer process, the energy release rate
between the transfer stamp and the donor/receiMestimte plays a critical role. Thus, successful
implementation usually relies on precisely tuninglsenergy release rates [38]. Previously, various
theoretical and experimental methods were reparsgay different tuning approaches [39-41], e.g.,
using various micro structures or kinetical coningl [42-46]. However, these transfer printing
mechanisms usually results in a narrow operatiaradiow, hindering fast transfer of the knowledge
to other groups that are likely to use them. Furtheost of these transfer techniques often lack
selectivity, and patterning selection is necesslanyng prior preparations, e.g., optical lithograph
and corresponding chemical/physical etching, wimakes the process technically complicated and
hence lower the success rate. By tuning the adhedithe stamp via an amide embedment [47] and
using the stamp as a receiver simultaneously, wsepted a simple transfer printing technique that
can achieve selective transfer of desired pattgt8 However, such an adhesion tuning is a bit
time-consuming, and the selection strictly based pattern line width limits its widespread
applications. Hence, a better tuning strategy viithad operational window and more general
selective transfer printing mechanism would siguaifitly enhance its efficiency and applicability.

Inspired by LEG® toys, by utilizing a newly-developed laser-tuneglestively adhesive
transfer printing of modularized heterogeneous. (prg-anisotropic magnetized ferromagnetic and
other functional) cells, we propose an elegant f¥leible approach to configure 3D

discretely-magnetized multifunctional soft robdtéth the newly presented method, we demonstrate
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a wide range of soft magnetic robots, including 3ID/magnetized, 2D/3D shaped, heterogeneous
responsive, multi-field responsive, environmentcpgtion, multi-function integration and even
functional updating, repairing and recombinationdafughter robots. Furthermore, a few possible
application scenarios were demonstrated, such exgspty assembling an LED with micron-scale
electrodes onto a circuit in a confined space f(iteed 2 mm, Movie S1) and carrying out drug
delivery with a certain trafficability and steeriimga wet and unstructured condition that mimicked
gastric environment (Movie S2). As a simple yetkefive technique, our fabrication method may
offer researchers an extra toolbox to preset 2/&@rete magnetic domains and achieve various

functional integration towards intelligent soft cib.

2. Resultsand discussion

As mentioned earlier, a selective transfer of @esiwidth pattern was developed by our group
recently. However, when we try to use this techeitp make a configurable soft robot as LEGO
toys do, such a selective mechanism on width shveomstrains freedom in robot design. A more
general selective transfer printing is urgentlydexke Surprisingly, as shown in Fig. 1a, we found
that by selectively surface ablating an elastom&@amp/film using different operational parameters,
it can selectively lead to diverse local surfacerphologies. Based on such a principle, the
corresponding practical contacting surface areahmmde its adhesion, can consequently change the
energy release rate between the interfaces, Fijgndtead of relying on the peeling speed and other
factors. Such a surface adhesion tuning mechanist@ngially provides a strategy for selective
transfer printing. Furthermore, leveraging the edé magnetized magnetic field, ferromagnetic
particles can be arranged in an orderly queueast@iner matrix and hence perform an anisotropic

magnetism (Fig. 1¢). Combining such a laser-tureddctively adhesive transfer printing and laser
6
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cut pre-anisotropic magnetized ferromagnetic siieaells, as shown in Fig. 1d and e, we present
here a simple yet effective way to fabricate 2/3&xiktely-magnetized configurable soft robots with
a 2/3D shape on a sacrificial 2/3D substrate (ndetails, refers to the following and Experimental
section), as well as extensive heterogeneous atiegr of other functional modules via transfer

printing of desirable functional cells.

2.1. Laser-tuned selectively adhesive transfer printing and soft robot fabrication

Initially, thin neodymiume-iron-boron (NdFeB) micragicles embedded ferromagnetic silicone films
are prepared by scraper scraping a thin layer @btighly mixed PDMS-prepolymer with NdFeB
microparticles on a flat support. The internal metgndomains in such a ferromagnetic particle
embedded silicone film that is in a semi-curedestan be bulkily reoriented and then fixed upon
fully cured in any arbitrary directions by aligniagparallel magnetic field (Fig. 1¢ and d). With a
high-power lasing, the cured, anisotropic magndtifibn can be cut into any arbitrary planar
patterns. Surprisingly, as shown in Fig. 1a, whentried to use a relatively low power laser to scan
the surface, we found that the surface morpholdgh® magnetized film can be altered and tuned
by varying the laser operational parameters. Thaang, the adhesion and corresponding energy
release rate between a silicone made stamp anpiatiern-cut magnetized film can also be tuned to
satisfy the physical requirements during transfentipg (Fig. 1b, more detailed mechanism
investigation, please refer to the following subheer). More importantly, such a laser-tuned surface
morphology/adhesion mechanism removes the conttrampattern width in the previous developed
approach, hence can serve as a general stratégynsber any desired patterns.

Serving as basic pre-anisotropic magnetized fergoiic cells, any pre-cut specific patterns

can be selectively picked up from the donor andsfier printed onto a receiver while undesirable
7
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patterns remain on the donor after the surface hubogies are selectively altered. According to the
previous work [30-32], precisely presetting (encaggliof magnetic domains inside silicone cells is of
great importance in the construction of high-perfance magnetic robots. Through a proper tuned
predesigned temporal sequence or spatial alignomiguration of a multiple transfer printing, a
soft magnetic robot structure with discrete presagnetic domains can be obtained on a temporary
(e.g. water-soluble) receiver (Fig. 1e). After thidte adjacent cells were spliced before releasing
from the receiver by removing the temporary reaeimed a magnetic robot was formed finally
(Movie S3). Owing to good compliance of silicondlgethe receiver can either be planar or 3D
shaped. Therefore, 2/3D shaped robots can be ebtéiyn a proper alignment of the pre-anisotropic
magnetized ferromagnetic silicone cells and theesponding design of soluble sacrificial receivers
(Fig. 1e).

Unlike on-demand magnetization strategies, ourgmore homogeneously magnetizes the entire
film which may potentially enable large-area palathanufacturing, and the direction of internal
magnetic domains can also be adjusted during [@sézrning and transfer printing process. That is,
the combination of original magnetization, lasettgraing and cells alignment determine the final
internal magnetic domain configuration. Such a netigation strategy is a flexible configuration

method and can effectively prevent magnetizativerfare during the whole process.

2.2. Mechanism of surface adhesion tuning and selectively transfer printing

During the transfer printing process, siliconexshould be picked up from a donor and then printed
onto a receiver. According to transfer printing dhge the surface adhesion/energy release rate

between the donor, receiver and stamp should galieffollowing criteria:
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Gstamp/cells 5, gdonor/cells  for nickup 1)
greceivers/cells ~ gstamp/cells — for printing (2)

As shown in Fig. 1b, the energy release rate betwstamp and cells should be tuned in an

appropriate range: greater than the energy reledésef weak interface between cells and donor for

picking up, and less than the energy release fas&rang interface between cells and receivers for

printing.

As found in this work, the energy release rate betwthe pre-pattern-cut cells and stamp can
be tuned by surface morphology control, e.g., Via ldsing the stamp or patterned magnetic cell
surface. In practice, such a control can be impigeteby varying a few laser operational parameters.
Fig. 2a shows the effect of laser scanning speemhd scanning line spacind) on the surface
roughness of a stamp. With a decrease in scanpiegsor lasing line spacing, the surface changed
from smooth to rough (Fig. 2a and S1). This is &siaat with the profile observed in the images
obtained using an ultra-depth three-dimensionalcaptmicroscope (Fig. S2). Furthermore, we
systematically studied the effects of laser scapsipeed and scanning line spacing on the energy
release rate of the interface between the magfietiand transfer stamp by following a previously
developed protocol.

It is well-known that the “sticky” contact surfaptays an important role in surface adhesion that
relies on van der Waals force and this was verifiredhe previous study [49]. Since we used
silicone-based materials to make the transfer st@snpell as the transferred cells, it is hypothexbiz
that the effective contact area will be an impdrtiactor in the transfer process. Based on this
hypothesis, we propose a mathematical model (Ecgl8)ing scanning speed, scanning distance of

laser, and energy release rate to the effectiekystiontact surface:
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G =G [((d;—zw)2> + (%;WZ) [ksinm (;—:}) + b] +e 3

Go, W, v, are the original energy release rate (~14°)J/faser spot size (0.02 mm) and maximum

scanning speed (2200 mm/s), respectively. By nuwakfitting, the constants k, m, b and e in our

situation can be determined resulting in:

G=Gg [<(d — W)2> + (ZWd _ WZ) 199 x sin®779 (;—v> — 123]] —1.31 (4)

d? d? Vo
According to Eq. 4, we can tune the surface adhesiith appropriate laser parameters during
transfer printing implementation (Fig. S3) undeg tluidance of surface energy release theory (Fig.
1b).

Notably, during the transfer printing process, ¢énergy release rate between the cells and donor
was relatively low, which results in a weak integébetween the cells and donor. Hence, the cells on
the donor are prone to be picked up by the stamganwhile, the surface of dissolvable receiver is
sticky, the pre-pattern cells can be transfer pdndnto the receiver from the stamp. Therefore, by
tuning the surface morphology of stamp and hengts tadhesion in an appropriate range, it offers a
new method to achieve transfer printing in a sinvpdg. More importantly, the surface morphology
and adhesion of stamp can be modified on demandezhy specific zones with a laser scanning
adjustment. Hence, the surface morphology can tthreletermine whether ferromagnetic silicone
cells being picked up or not, combining the lasgticg. Consequently, utilizing this principle, we
can easily achieve a selective adhesive transfatimy coupling laser patterning and operational
parameter tuning. Similarly, such a strategy camigexl on the surface morphology modification of

the pre-anisotropic magnetized ferromagnetic fitmd hence the adhesion tuning as well.
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As shown in Fig. 2c, we demonstrated such a setdygtiransfer print of a magnetic butterfly by
tunable surface adhesion. The pre-cut stickierebilyt cell was selectively picked up and transfer
printed onto the receiver by a stamp while rougbdeparts remained on the donor (more detalils,
refer to Movie S4). Further, a parallel transfemfing and following splicing of two identical
magnetic response rays were also accomplished gmgltwo industrial robots (Fig. 2d and Movie
S5), showing the capabilities of this techniquedatomatically and parallelly fabricating magnetic

robots.

2.3. Magnetization characterization

To systematically study the effect of various faston the response characteristics of ferromagnetic
silicone cells that are subjected to magnetic §idl0]. We measured the deflection anghe d¢f
ferromagnetic silicone cells as a function of magn#ux density with a characterization platform
(Fig. 3 and S4). As expected, we found that thirereat longer geometrical dimensions induce a
greater deflection of ferromagnetic silicone céiicause of decreasing structural stiffness (Fig. 3a
Also, the effect of various ratios of PDMS-prepobm{silicone base/curing agent) on the response
of magnetized cells was explored. As the ratio éased, the stiffness of the magnetized cells
decreased [51], so that greater deflection occunreter the same magnetic flux density (Fig. 3b).
However, excessive ratios will lead to too soft astitky structures which are susceptible to
mechanical damage. In addition, we also studied etffiect of ferromagnetic particle (NdFeB)
concentrations on ferromagnetic silicone cell resgo As shown in Fig. 3c, when the ratio of PDMS
base and NdFeB particles was 1:2, magnetized oedished peak deflection. We found higher
concentrations will enhance the stiffness of thecstire thus decreasing deflection for the same

magnetic flux density.
11
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In practice, film-formation and curing on glassdsk is prone to produce obvious structural
anisotropy and residual stresses for this kind e@nmrorane structure. Therefore, ferromagnetic
silicone cells tend to deflect more in one directiban the other in equal and opposite magnetic
fields, hence leading to relatively large errorsshswn in Fig 3c. When the ratio of PDMS silicone
base to NdFeB particles was high (2:1), the magrietgue-induced force is very low and thus the
structural anisotropy and residual stresses halaggar impact on magnetic response. In contrast,
when the concentration of magnetic particles igdarthe error induced by residual stresses is
smaller because the magnetic torque-induced fasenaes a larger role.

We further studied the effect the magnetized magretld. Stronger magnetized magnetic
fields can produce better magnetization and shobetier magnetic response under the same
actuation magnetic fields (Fig. 3d). Additionallyre cross-section of pre-anisotropic magnetized
ferromagnetic film was observed under the fieldnstag electron microscopy (FSEM) (Fig. S5).
We also found that precuring times also affect therticle distribution, as revealed by
energy-dispersive X-ray spectroscopy (Fig. S6).hiiicreasing precuring time, the distribution of
ferromagnetic particles was more uniform, resultinga slightly higher magnetic torque-induced

deflection (Fig. 3e and f).

2.4.Configurable soft magnetic robots

Configurable robots have high versatility and dest@ate stronger adaptability in different
environments, and their operational modes can hilsyd or functional modules can be added or
updated when needed [52]. Similarly, configurapiig a desirable character for microrobots, too, to
flexibly assemble target microrobots according pecsfic designs. Utilizing the newly-developed

transfer printing method, various soft magneticotststructures with diverse shaped and magnetized
12
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profiles can be flexibly obtained. Here demonsttadeserial of soft magnetic robots with specific
magnetic domains and shape profiles that transiered with various magnetic cells.

Reprocessable and repairable features are als@blesin many scenarios [53]. Here, by simply
reassembly three more arms on a tripod robot, &geg this transfer printing-based method in Fig.
4,a and b, it can function as a weight-lifting robeing able to lift a cargo (0.05 gp to 5 times of
its own weight (Fig. 4¢ and d). What's more, the weight-lifting robot daa repaired by replacing
the unnormal cells leveraging laser cutting andaretfer printing, a desirable feature if local
degaussing/damage should occur, Fig. 4e-h. Simcpr#ranisotropic magnetized ferromagnetic cells
can be selectively transferred onto shape altersduteificial receivers, our technique is capable of
combining 3D shapes or/and 3D discrete magnetizatsodemanded by some particular applications.
As shown in Fig. 4i, a series of magnetic 2/3D slgagtructures with 2/3D magnetization have been
realized and show specific response behaviors.

Besides the above flexible alignment and combinat discrete pre-anisotropic magnetized
cells, our strategy can be extended to robot coatioin and reconfiguration from a few modular
(daughter) robots targeted for various behaviosssi#own in Fig. 4j, based on the same honeycomb
gridded structure with an opposite alignment of neged cells (afferenty type, and afferenf3
type, to its geometrical center), we configure themih different combinations (evenly
circumferential distributed three type daughter robots with inner tips spliced tbget triangular
distributed threea type daughter robots with tips spliced togethéacleda type andp type
daughter robots with outer tips spliced togeth€r, ¢hifted stackedx type andf type daughter
robots with centers spliced together) to obtainotes behavioral magnetic robots, Fig. S7 and Movie
S6. under a same external magnetic field, they sdowtally different behaviors and motion
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patterns, although they were made from the homalegtaughter robots. Connection forms and
fixed constraints between daughter robots also ptaymportant role in controlling the motion of
robots subjected to external magnetic fields. Fstance, just shifting the connection points, the
robots showed totally different behavior in a saeméernal driven magnetic field. More potential
motions can be achieved by varying assembly aligniraed fixed constrains based on such kind of

daughter robots.

2.5. Heterogeneous integration towards multifunctional soft magnetic robots

Heterogeneous integration of different functionaftp into a robotic system is an effective way to
achieve more sophisticated and controllable respdiehaviors [54], such as gradient-response,
multi-field actuation, actuation and perceptionegration and so on. In our transfer printing
processes, the transferred targets can be eadltitsiied, and it brings a native advantage for
heterogeneous integration of diverse functiondkceltilizing this feature, abundant functionallsel
fabricated by a variety of advanced manufacturirgthmds can be transfer printed in a robotic
system at a low cost, which significantly extenks tabrication flexibilities and abundance of soft
magnetic robots.

With a different concentration of ferromagnetic tpes and pattern shapes as shown in Fig.
5a-c, we made a heterogeneous magnetically-resgofiewer-like structure by mimicking stamens,
petals, and leaves of a true flower. Under the sacbgation situation, the corresponding magnetic
cells show a different bending response (Fig. 5é$) shown in Fig. 5g and Movie S7, it can mimic
the open and close processes like a true dandiédeer with a single relatively uniform actuation

magnetic field.
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Multi-field actuation, self-sensing and environmeetception are also attractive attributions for
small-scale robots, as showing in the previous Wb856]. For example, Nelsaat al reported an
ingenious soft micromachine with programmable ntgtéind morphology. The compound bodies
can respond to external magnetic signals for mghaind spatiotemporally controlled heating signals
for shape shifting [55]. Besides heterogeneous wetacaily-responsive cells, we further integrate the
cells with totally different materials and actuatimmechanism to realize multi-field actuation. A
multi-field responsive robot with magnetic cellsdashape memory polymer (SMP) cells was
achieved with two independent actuations (Fidh &nd i, Movie S8). The thermal stimulus actuates
the SMP cells to recover its initial shape and eghsently the magnetic stimulus actuates the
magnetic cells to deform, which is mutually indeghent and will not interfere with each other. For
multifunctional heterogeneous integration, we seasiy transfer print the actuation cells and sensor
cells into a robot, Fig. 5] and Movie S9. Theraheee-legged robot is integrated with 3 actuation
magnetized cells and a temperature sensor cell.rdbet can locomote and detect the ambient
temperature real-timely by indicating different@a (orange red on cold surface and yellow on the
hot surface). Moreover, other functions can alsinbegrated into a robot system for more complex
tasks including but not limited to actuation, sensactive signaling/interaction, energy
harvesting/storage/management and computing/congité. Since these diverse functional cells
with various materials, structures or functions niy obtained conveniently with most suitable
fabrication techniques, the transfer printing mdtltan provide a general platform technique to
heterogeneously integrate these functional cetts ansoft magnetic robot for a specific application
or scenario in practice. Consequently, this metta maximize the advantages from all kinds of
materials, structures or functions with correspogdfabrication techniques, fully utilizing the
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specialties of these techniques for sophisticateédtrimplementation in a reasonable cost at present

stage.

2.6.Application demonstrations

To explore the potential applications of soft mdgneobots, we further develop several specific
configured magnetic robots, working in several wttired environments and demonstrating their
corresponding capabilities. We are excited th&t @asy to directly obtain a hollow sealed ultrathi
structure on a soluble sphere receiver. Such awo#lealed ultrathin 3D structure with specific
magnetization profiles is costly to make with otfedsrication techniques. This 3D shaped structure
with 3D continuous and discrete magnetization ardle actuated under varying actuation magnetic
fields (Fig. 6a). Furthermore, such a kind of hwilgealed ultrathin structure can be utilized to maim
the rolling mode of the tumbleweed, and providesotution for a robot to pass through an
unstructured and harsh gastric environment. As showFig. 6b and Movie S2, targeted drug
delivery can be accomplished with few obstaclesuch a condition. This tumbleweed robot shows
omnidirectional motion and pass-ability in suchastgc bumpy model filled with water in a rolling
mode. What’'s more, it has a high empty volumetatdr (92.8%) and hints it potentially allows for
relatively high volume for cargo load.

Besides the tumbleweed inspired robot, we also Idped an inchworm-liked robot and a
three-legged robot. Their linear locomotion chagdstics have been discussed in the Supplementary
Materials and figures (Fig. S8 and S9). The incmike robot can walk steadily in an S-shaped
tube with an inner diameter of 8 mm (Fig. S8). Rert in this configuration of the inchworm-like
magnetic robot that is heterogeneously integratedguour method, its none responsive planar cell

can provide a relatively stable bearing platfornrmiavement. We found that under a tight, confined
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environment, it can carry an LED with micron-scelectrodes into the confined space with height of
about 2 mm and assemble it onto a functional diraod turn on the circuit by precisely assembling
an LED on liquid metal circuits (Fig. 6c-f, Fig. @land Movie S1), indicating its potential

applications in ultrafine assembly in the future.

2.7. Discussion
Compared with the previous works, the advantagesusf method are mainly reflected in the
following aspects. First, it is easy for flexiblygsetting magnetic domains since the ferromagnetic
particles can be re-orientated in an arbitrary &@ation during magnetization process (additionally
laser cutting patterning and alignment can alse tilme magnetic domains). Alternatively, we can
also achieve a 3D shape by aligning the discregnet&zed cells on an arbitrarily-shaped temporary
receiver and further flexibly combine 2D/3D shapad 2D/3D magnetization profiles as demanded.
Second, it is easier for heterogeneous integraifovarious function/material cells to obtain more
sophisticated behaviors, and undesirable cells @ugkter robots can be quickly
replaced/updated/recombined by retransfer prin{ing detailed characteristic comparison with
existing methods was shown in Supplementary Tablan$he Supplementary Materials). However,
with our present fabrication facility, the lower tbw limit of constructed robots is around
submillimeter scale. Smaller scale and more sophisd robots could be configured with further
material/process optimization or/and advanced ¢akion facility with higher precision. Furthermore,
more heterogeneously-integrated, functional sys&ogsoft magnetic robots can be further studied
towards higher intelligent and performance in tineirfe.

More importantly, small scale soft robots are offgeferably reconfigured in real time and

programmed online in many specific applicationg,,ereviously demonstrated camouflaging soft
17
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robots [57], shape-morphing micromachines with @arsitu reprogrammable strategy [58] and a
swarm robotic system based on loosely coupled caemo[59]. Under the existing circumstance,
our method, majorly, is an offline strategy like GE’s, providing a feasible solution for making
modularized soft magnetic robots with a flexiblenfiguration and working modes shifting. With
further investigation and development, we beliavehsa technique will be helpful to develop a robot
that can highly adapt to their immersed complexiremments via introducing the real-time
reconfiguration and re-programming mechanisms dh axtuated and functional modules in the

future.

3. Conclusions

By introducing a surface adhesion tuning mechandarnived from laser surface morphology
alteration and establishing its theoretical adhesimodel, we developed a facile transfer
printing-based technique for flexible fabricatio multifunctional soft magnetic robots. This
method enables rapid fabrication of soft magnedhmts in a configurable way and makes it easier
for heterogeneous integration of diverse functidharticularly, via systematic experiments and
theoretical modeling, we revealed the influence masms of laser treatment under different
parameter settings on the surface morphology amsl it surface adhesion of flexible silicone film
substrate. The magnetized cells can be specifiecttjr and selectively split, transferred and
subsequently printed to make a robot simply by wv@rjaser parameter settings. This method can be
a versatile platform technique for flexibly confring soft magnetic robots with specific shaped and
magnetized profiles, and enabling the heterogeirdagration of totally different functional cellerf

constructing sophisticated magnetic robots.
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4. Experimentals

4.1. Preparation of the ferromagnetic silicone cells

The magnetic robots consist of two kinds of cettsignetic cells and connecting cells, respectively.
The magnetic cells were made by mixing commerdiadose elastomer (Sylgard 184, silicone
base/curing agent 20 g: 1 g, Dow Corning, USA) wil9 g ferromagnetic particles
(MQFB-B-20076-089, Magnequench, USA). The connegctoells were made by mixing the
commercial silicone elastomer with carbon black 78, Cabot, USA) from Alibaba at a weight
ratio of 10: 1: 0.05 (silicone base: curing ageairbon black). The detailed processes are described
as following: First, the ferromagnetic particledicene base, and curing agent were stirred bytaligi
stirring (RW 20, IKA, Germany) at 2000 RPM for 3miSecond, the mixture was vacuumed to
remove bubbles. Third, the mixture was bladed athin film. Fourth, the thin film was precured at
75°C for 5 min in an oven (UF 55 plus, Memmert, Gerg)ao increase its viscosity and avoid the
ferromagnetic particle accumulating in the two side magnetization process. Specifically, to
visualize different parts of dandelion flower-liggucture such as stamens, petals and leavesusario
dyes were added in the PDMS mixture.

4.2. Preparation of the stamp and the donor/receiver substrate

The stamp was prepared via mixing PDMS (Sylgard $Bi¢one base/curing agent 30 g:1 g) with 3
g of nano reduced iron powder. First, the silicangjng agent and nano reduced iron powder were
stirred by a digital stirring at 2000 rpm for 3 mBecond, the mixture was bladed casted into a thin
film of 1000 um after vacuumed for removing extra bubbles. THhind, film was cut as a stamp and
the surface of the stamp was ablated to tune it®sadn by a UV laser maker (HGL-LSU3/5EI,
Huagong Laser, Wuhan, China) with a pulse frequenic80 kHz, pulse width of 0.2s, and
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working current of 33.5 A. the donor is a releaapgy peeled off from adhesive stickers (Tango, A4,
Alibaba, China). The planar receiver was made efwater-soluble tape (ASWT-1, Aquasol, USA)
and the 3D receiver is customized by a 3D Pringgngipolyvinyl alcohol (PVA) soluble filament
from Alibaba.

4.3. Magnetization, patterning, transfer printing and splicing

The semi-cured thin nonmagnetic film was magnetireder the parallel magnetic field produced by
a pair of planar magnets (N35-NdFeB purchased #dilmaba, about 2500 Gs surface flux) in the
oven at 78C for 40 min. Then, the magnetized film was fulled on a programmable heating
platform (PR5-3T, Harry Gestigkeit, Germany) at@@or 30 min. Finally, the magnetized film was
cut into various magnetized cells and selectivedated to tuning the adhesion according to the
design by the UV laser maker with a pulse frequeoic$0 kHz, pulse width of 0.2/0.4s, and
working current of 33.5 A. Ferromagnetic silicoredl€ were selectively picked up by the stamp and
printed on the temporary receiver. The assemblynagnetic robots can be achieved by multiple
splicing discrete magnetic cells into an entityasupportive receiver. The interfaces between the
adjacent cells were spliced by a superglue (7148i, [@hina). to quantitatively characterize the
response of magnetic cells, all cells are cut sypecific rectangular cells (thickness of 0.2 mm,
length of 5 mm and width of 2 mm in Fig. 3b-d, #mess of 0.2 mm, length of 8 mm and width of 2
mm in Fig. 3e).

4.4. Optical characterization

A metallographic microscope (BA310MET-T, Motic, Xa@n, China) with a CCD camera was used
to observe the direction state of the Ferromagnpédicles in the liquid PDMS matrix. An
ultra-depth three-dimensional microscope (DXS X2ympus, Japan) was used to characterize the
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surface roughness of the stamp scanned by thedasder different parameters. The response of the
magnetic robots or structures were recorded bygaatlicamera (Canon EOS 70D, Tokyo, Japan).
The distribution of the ferromagnetic particlestie cured PDMS matrix was observed by a field
scanning electron microscope (FSEM, GeminiSEM308sl Geiss, Germany) through the cross
section. The response characteristics of quadratmaetic cells was recorded by an industrial USB
microscope (Al, Andonstar, China) under specifignadic fields.

4.5. Sample preparation and test methods for Energy rel ease rate measurement

Sample preparation: first, a thin film of releasapgr was stuck onto the surface of a smooth
aluminum plate. Second, the magnetic PDMS compasgtebladed into a thin layer (thickness: 200
um) on the Polyethylene terephthalate film (YH-2980anghai Yunhao, China) and consequently
cured at a 78 for 40 min in the oven and at @D for 30 min on the heating platform for totally
curing. Third, the cured magnetic film on the PEmfwas cut into a specific pattern by the UV
laser marker finally being attached uniformly te thonor surface. A standard customized roller was
used to ensure the attachment tightly and evemigl, then the sample for measuring the energy
release rates of the interface between the magfieti@and donor was ready for the energy release
rate measurement. The same method is used forrprgghe sample of stamp and planar receivers
for characterizing the interface of magnetic filtaraps and magnetic film/receivers; Energy Release
Rate Measurement methods: the energy release ratsumement setup was based on the
international standard test method for 90° peelegjstance of energy release rate (Designation:
ASTM D 6862-2004) and test method for peeling gjtierof pressure-sensitive tape (Designation:
GBI/T 2792-1981).

4.6. Fabrication methods and experimental settings in demonstrations
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For Automatically parallel assembly of two magnetgs, the pre-anisotropic magnetized film was
patterned and surface treated by laser with diffteoperational parameters. Two identical ray cells
were selectively transferred printing on a plar@ulsle receiver by an industrial robot (KR3, R540,
KUKA, Germany). And the junctions were spliced wiflue by a 3-axis automated fluid dispensing
robot (SM 200DS, Musashi, Japan); For Assemblindp Lik a confined space and targeted drug
delivery: a rectangle NdFeB magnet (100 mm x 50 2O mm, N52, about 2200 Gs surface flux,
Alibaba) was used to generate magnetic fields reduifor actuation; For configuration of
homologous daughter robots: all combined griddeacsires were actuated in a water environment
and show the different behaviors and motion pastelre to their different alignment and constraints;
For multi-field responsive robot: the robot wasegrated with magnetic actuation cells and thermal
actuation cells that was printed by commerciallaitable 3D FDM printer directly with SMP
filament; For Heterogeneous integration of actuatiells and sensor cell: the actuation cells were
made of pre-anisotropic patterned magnetized siéicoells (PDMS base: cross-linking agent:
NdFeB=20: 1: 40 g). the temperature sensor was ro&de patterned PDMS film coated with a
thermochromic pigment (720-QT-004-10, Angelus Shumish, USA) which was red in cold
environment and yellow in warm environment (morantt28C); For targeted drug delivery: a
polyvinyl chloride model stomach (160 mm x 110 mnb% mm) filled with water was used to
mimic unstructured stomach environment, and a temééd-inspired robot was actuated for
targeted drug delivery in such environment under ékternal magnetic fields. (Fabrication of the
ultrathin 3D sealed structure: first, they wereeasisled by multiple splicing discrete magnetized
cells on a dissolvable 3D receiver. Then, adjacefis were spliced by a superglue. Finally, the
temporary receiver was dissolved by water to gheihdependent 3D structure); For locomotion
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and assembling process, the direction and intedityre applied magnetic fields were varied by
manually manipulating the magnet to change itstiprsiand orientation according to the specific

situation.
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610 Fig. 1. Soft magnetic robot fabrication by selectively sfam printing. (a) Schematic illustration of
611 typical settings and parameters for surface adhdsming by a surface laser scanning. (b) Analytica
612 diagram of critical energy release rates for tlaangi/cells interface, cells/donor substrate interfac
613 (weak interface) and cells/receiver substrate fiater (strong interface). The surface adhesion of
614 stamp or magnetized film can be tuned by laseasarfreatment under different scanning speed and
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616 to satisfy the transfer printing criteria. (c) Swotaic magnetization mechanism. (d) Arbitrarily

617 magnetized film preparation processes. (e) Sekdgtivansfer printing soft magnetic robots on 2/3D
618 soluble receivers.
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629 Fig. 3. Characterization of ferromagnetic silicone cellsponse to magnetic fields under various
630 factors and magnetic particles distribution witffedent precuring time and temperature. (a) Effects
631 of geometrical parameters of cells on the respechseacteristics and the setup of test platform for
632 charactering the response characteristics. (b)c&ffef different component ratio of PDMS on the
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636 the distribution of the microparticles of NdFeB.
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637 Fig. 4. Configurable modularized magnetic robots: functigndating, repairing, transfer printing of
638 various magnetic robots with different magneticfie and shapes, recombination of homologous
639 daughter robots. (a-b) A three-legged robot inrdst state and response state, respectively. (c) A
640 weight-lifting robot that is transformed from thHe¢e-legged robot by reprinting three arm cell}. (d
641 The weight-lifting robot under the magnetic fieldts a cargo that is five times weight to its€k-f)

642 The weight-lifting robot suffered from local degaumgy and local damage. (g-h) The weight-lifting
643 robot was repaired by replaced the abnormal ¢elDémonstrations of various magnetic robots with
644 different magnetization profiles and shapes. (jrdXdiguration of the magnetic robots employing
645 homologous daughter robots with different consteaand corresponding response behaviors in the
646  water environment under the actuation magnetidgiel

34



2mm b 2mm ¢ 2mm d  300G6s 2MM €  9o0Gs 2MM f  {500Gs 2Mm

%{% { & W W

ik B i o iRl o o R i

E field B field E field

S

g |
c
o
. o —
/ % Thermal stimul
D: ermal stimuius
SMP cells -
Magnetic stimulus
27°C
Magnetic cells Time
Actuatlon cells T e
69.2s :
S E
Sensor cell 2" :
v Heatlng i

Thermochromism

Cold area (Room temperature)  Hot bed (45-60°C) Cold area (Room temperature)

647 Fig. 5. Heterogeneous integration of different responsaatyation and functional cells. (a-c) Three
648 kinds of petals with different ferromagnetic padicconcentrations and gradient response
649 characteristics. (d-f) Recombinant flower-like stture with gradient responses under a magnetic
650 field of 300Gs, 900Gs and 1500Gs, respectively. Ntinicking the blooming process of the
651 dandelion flower. (h) A multi-field actuated robby heterogeneously integrating SMP cells and
652 magnetic cells together. (i) Sequential actuatiorthe hot water environment under the thermal
653 stimulus and magnetic stimulus, respectively. (@tdlogeneous integration of actuation and sensor
654 cells on a three-legged magnetic robot for suffigenperature perception during locomaotion.
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655 Fig. 6. Application demonstrations of soft magnetic rob¢#y The schematic of the shape and the
656 magnetic domain profiles of the tumbleweed-inspm@abt and corresponding actuation setup. (b) A
657 tumbleweed-inspired robot achieved targeted druigety in a gastric model filled with water. (c-f)
658 Demonstration of an inchworm-like magnetic robot &m SMD LED delivering and functional
659 circuits assembling in a confined space.
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Appendix

Figure. S1. Surface three-dimensional contoure®ktamp treated by a UV laser under the different
parameters respectively.

Figure. S2. The ultra-depth view of diverse surfac@phologies by varying laser scanning
parameters.

Figure. S3. The actuation platform and the respohaeacteristics platform.

Figure. S4. The relationship among scanning spiistince of laser and energy release rate.
Figure. S5. FSEM view of the PDMS mixed with magredt Ferromagnetic particles.

Figure. S6. The EDAX results of different positiasfanagnetized film.

Figure. S7. Multiple-printing and reconfiguratioropesses of magnetic robots.

Figure. S8. An inchworm-like magnetic soft robotlats locomotion characteristics under a magnetic
field pulse.

Figure. S9. Actuation of wadding gait and its dis@iment under a periodic external magnetic field.
Figure. S10. The demonstration setup for LED peeassembly by the inchworm-like magnetic robot
in a confined space.

Table S1. Capabilities of major methods for faltiigasoft magnetic robots.

Other Supplementary Materials for this manuscnptudes the following:
Movie S1 (.mp4 format). Assembling an LED in a ¢oafl space by an inchworm-like magnetic

robot.
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Movie S2 (.mp4 format). An ultrathin healed holltwmbleweed-inspired robot for targeted drug
delivery in a model gastric environment.

Movie S3 (.mp4 format). Transfer printing processka magnetically-responsive petal.

Movie S4 (.mp4 format). Selectively transfer pmgtia magnetic butterfly by surface adhesion
tuning.

Movie S5 (.mp4 format). Automatically and paralgiirinting two magnetic rays.

Movie S6 (.mp4 format). Reconfiguration of daughtdyots with different connections and
constraints.

Movie S7 (.mp4 format). A magnetically-responsilawer-like structure by combining magnetic
stamens, petals and leaves with different concemtisaof ferromagnetic particles.

Movie S8 (.mp4 format). Sequential actuation inhlbewater environment under the thermal
stimulus and magnetic stimulus, respectively.

Movie S9 (.mp4 format). Heterogeneous integratibacbuation and sensor cells for temperature

perception.
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Appendix

L ocomotion analysis of inchworm-like magnetic robots and three-legged magnetic robots

An inchworm-like magnetic soft robot was assemibeded the above fabrication processes and
characterization results. The magnetic robot ctedief two inverse ferromagnetic silicone cells
with a different terminal structure that would caws different frictional force during locomotion
(Fig. S8a). With the predesigned discrete distidyutof the ferromagnetic domains, the
inchworm-like magnetic soft robot can be actuatembilg under a pulsed magnetic field
perpendicular to the operation plane. As shownign 8b, by controlling the distanbebetween the
planar permanent magnet and operation platformyrthgnetic flux density acting on the operation
platform changed. Therefore, an approximate periathgnetic field can be generated by a periodic
up-and-down movement of the planar permanent magnattuate the magnetic soft robot for a
linear motion (Fig. S8c). The planar magnet can eniavthe horizontal direction synchronously with
the magnetic robots in order to maintain a steadtical magnetic field. Thus, as shown in Fig. S8d,
a periodic displacement can be achieved underitget of the external magnetic field.

Furthermore, we analyzed the locomotion of the retigmobot in detail. As shown in Extended
Fig. S8e and f, we assume that the frictional farae be divided into static and kinetic friction.
When the driving force was lower than the statictifvn, the feet were anchored; otherwise,
movement of the feet occurred resisted by kineaiatién. The locomotion of the inchworm-like
magnetic robot is comprised of two movements: ffoot movement and rear foot movement. Due
to the different tip structures of the feet, thentr foot and rear foot can have different maximum
static frictional forcesfg, andfg;) and kinetic friction forcesf{; andfr,) on a same actuation
platform.Fy, represents the force induced by the magnetic @irlthe ferromagnetic silicone cell.
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During the first movement, the front foot slidesil@tthe rear foot is anchored on the platform.

The state condition is expressed as Equation (S1):

fr1 > Fu> fr (S1)
During the second movement, the rear foot slidegevthe front foot is anchored on the platform.
The state condition is expressed as Equation (S2):

fre < Fu < fr2 (S2)
We can further understand the locomotion of théwurm-like robot and predict the movement by a
more elaborate mechanical model based on Newteotnsl law if we further calculate the magnetic
force.

To further verify our understanding on motion maqdasthree-legged magnetic robot was
designed. As shown in Fig. S9a, the robot movesdaod with a swaying gait. This agrees well with
our expectations. The periodic actuation magnegicls can be generated by a pair of permanent
magnets oscillating below the actuation platfornig(FS9b and c), and the angle between the
actuation magnet and horizontal plane was defised @he front foot displacement of three-legged
robots in five consecutive cycles was recorded.(l5gd) and indicates the robust and periodic

locomotion.
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Figure S3. The actuation platform and the response charatit=riplatform. (a) A planar NdFeB
magnet (length of 200 mm, width of 50 mm, thickne620 mm, surface flux density of 2500 Gs)
was used to create spatially varying magnetic didtat dynamic actuation by combining vertical,
horizontal, rotational, forward and backward movataeof the magnet. (b) A test platform for
guantitatively characterizing the response of tlagnetized PDMS cells in specific magnetic fields.
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759  Figure $4. The relationship among scanning speed, distantzsef and energy release rate.

760 Figure S5. FSEM view of the PDMS mixed with magnetized Feragmetic particles. (a) The
761 surface of the magnetic cells in the top view.Tbg distribution of the ferromagnetic particleghe
762 PDMS matrix in the cross section. (c and d) Theriistion of the ferromagnetic particles in the

763 PDMS matrix in longitudinal section.
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Alignment processes of magnetic robots
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Figure S7. Multiple-printing and reconfiguration processes roagnetic robots. (a-d) Assembly
processes of magnetic robots. (e-f) Reconfigurapoomcesses of daughter robots with different
combinations and constraints.
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An inchworm-like magnetic soft robot and its loaaion characteristics under a

magnetic field pulse. (a) Linear locomotion of anhworm-like magnetic robot. (b) Motion diagram
of planar magnet for actuation of the robot. (ciuation magnetic field acting on the platform (x-y
plane). (d) The displacement under the magnetld fielse. (e and f) Two gait states in different
steps.fr1, fr2, fr1, frp represent the static friction of rear foot in sfggkinetic friction of rear foot
in step 2, kinetic friction of front foot in stepdtatic friction of front foot in step 2, respediy. And
the R, represents the force induced by the magnetic.figil An inchworm-like robot walking

through the narrow s-shaped tube.
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inchworm-like linear motion
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778 Figure $9. Actuation of wadding gait and its displacementemal periodic external magnetic field.
779 (@) The locomotion of the magnetic robot under viagldjait. (b) Motion diagram of planar magnet
780 for actuation of the robot. (c) The actuation mdignelds acting on the platform (x-y plane). (d)
781 The displacement under the magnetic field.
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Figure S10. The demonstration setup for LED assembly by tltbworm-like magnetic robot in a

confined space.

Table S1. capabilities of major methods for fabricating sogéignetic robots.

Shape of States of Template or Heterogeneous Parallel processing
Method
media magnetization mold required integration capabilities
Template-aided

2D Continuum, 3D Yes No Yes

magnetization [23, 30, S1]

Microassembly of magnetic
3D Discrete, 3D Yes No Yes

components [S2, S3]
Ultraviolet lithography [32] 2D Discrete, 3D No No Yes

3D printing of ferromagnetic

3D Discrete, 2D No No Yes
domains [31]

This work 3D Discrete, 3D No Yes Yes

*Shape of media refers to the structure of the amsitp materials in which the magnetic particles are

dispersed. 2D refers to planar structures, whe3Bafers to solid 3D structures.

*States of magnetization is defined as degreeseefdlom related to the orientation of hard magnetic
particles or preferred magnetic axes of soft magmetrticles in each area. Discrete: Magnetization

in each area is independent of adjacent areasibont: Magnetization in each area cannot have
sudden changes with respect to adjacent areas.
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Highlights

1) Selective surface adhesion tuning via laser salfioiorphology alteration.

2) Selective transfer printing technique leveragirggfeselective adhesion tuning
3) A LEGO's strategy to flexibly configure heterogenssoft magnetic robots.

4) This method is potentially useful for the integoati and synergy of

multifunctionalities for higher intelligent soft bots
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